Random-phase approximation in a local representation
نویسندگان
چکیده
منابع مشابه
Random approximation of a general symmetric equation
In this paper, we prove the Hyers-Ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. As a consequence, weobtain some random stability results in the sense of Hyers-Ulam-Rassias.
متن کاملExtending the random-phase approximation for electronic correlation energies: the renormalized adiabatic local density approximation
متن کامل
random approximation of a general symmetric equation
in this paper, we prove the hyers-ulam stability of the symmetric functionalequation $f(ph_1(x,y))=ph_2(f(x), f(y))$ in random normed spaces. as a consequence, weobtain some random stability results in the sense of hyers-ulam-rassias.
متن کاملBeyond the random phase approximation Improved description of short-range correlation by a renormalized adiabatic local density approximation
متن کامل
The random phase approximation applied to ice.
Standard density functionals without van der Waals interactions yield an unsatisfactory description of ice phases, specifically, high density phases occurring under pressure are too unstable compared to the common low density phase Ih observed at ambient conditions. Although the description is improved by using functionals that include van der Waals interactions, the errors in relative volumes ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 1990
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.41.5568